Gsα enhances commitment of mesenchymal progenitors to the osteoblast lineage but restrains osteoblast differentiation in mice.
نویسندگان
چکیده
The heterotrimeric G protein subunit Gsα stimulates cAMP-dependent signaling downstream of G protein-coupled receptors. In this study, we set out to determine the role of Gsα signaling in cells of the early osteoblast lineage in vivo by conditionally deleting Gsα from osterix-expressing cells. This led to severe osteoporosis with fractures at birth, a phenotype that was found to be the consequence of impaired bone formation rather than increased resorption. Osteoblast number was markedly decreased and osteogenic differentiation was accelerated, resulting in the formation of woven bone. Rapid differentiation of mature osteoblasts into matrix-embedded osteocytes likely contributed to depletion of the osteoblast pool. In addition, the number of committed osteoblast progenitors was diminished in both bone marrow stromal cells (BMSCs) and calvarial cells of mutant mice. In the absence of Gsα, expression of sclerostin and dickkopf1 (Dkk1), inhibitors of canonical Wnt signaling, was markedly increased; this was accompanied by reduced Wnt signaling in the osteoblast lineage. In summary, we have shown that Gsα regulates bone formation by at least two distinct mechanisms: facilitating the commitment of mesenchymal progenitors to the osteoblast lineage in association with enhanced Wnt signaling; and restraining the differentiation of committed osteoblasts to enable production of bone of optimal mass, quality, and strength.
منابع مشابه
The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors.
Sox11 deletion mice are known to exhibit developmental defects of craniofacial skeletal malformations, asplenia, and hypoplasia of the lung, stomach, and pancreas. Despite the importance of Sox11 in the developing skeleton, the role of Sox11 in osteogenesis has not been studied yet. In this study, we identified that Sox11 is an important transcription factor for regulating the proliferation and...
متن کاملZfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity
Runx2 is indispensable for osteoblast lineage commitment and early differentiation but also blocks osteoblast maturation, thereby causing bone loss in Runx2 transgenic mice. Zinc finger protein 521 (Zfp521) antagonizes Runx2 in vivo. Eliminating one Zfp521 allele mitigates the cleidocranial dysplasia-like phenotype of newborn Runx2(+/-) mice, whereas overexpressing Zfp521 exacerbates it. Overex...
متن کاملRepression of Osteoblast Maturation by ERRα Accounts for Bone Loss Induced by Estrogen Deficiency
ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We se...
متن کاملRosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation.
Because osteoblasts and marrow adipocytes are derived from a common mesenchymal progenitor, increased adipogenesis may occur at the expense of osteoblasts, leading to bone loss. Our previous in vitro studies indicated that activation of the proadipogenic transcription factor peroxisome proliferator-activated receptor isoform gamma 2 with rosiglitazone suppressed osteoblast differentiation. Here...
متن کاملThe Effects of Iron Oxide Nanoparticle on Differentiation of Human Mesenchymal Stem Cells to Osteoblast
Introduction: IIron oxide nanoparticles (IO NP) have an increasing number of biomedical applications. To date, the potential cytotoxicity of these particles remains an issue of debate. Little is known about the cellular interaction or toxic effects of IO NP on differentiation of stem cells. The aim of the present study was to investigate the possible toxic role of different doses of IO NP in di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 121 9 شماره
صفحات -
تاریخ انتشار 2011